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Abstract. Gribov theory is applied to investigate the shadowing effects in the structure functions of nuclei.
In this approach these effects are related to the process of diffractive dissociation of a virtual photon. A
model for this diffractive process, which describes well the HERA data, is used to calculate the shadowing in
nuclear structure functions. A reasonable description of the x, Q2 and A-dependence of nuclear shadowing
is achieved.

1 Introduction

Deep inelastic scattering (DIS) on nuclei gives important
information on distributions of quarks and gluons in nu-
clei. The region of small Bjorken x is especially interest-
ing because partonic clouds of different nucleons overlap
as x → 0 and shadowing effects become important. There
are experimental results in this region, which show that
there are strong deviations from an A1 behavior in the
structure functions [1]. Several theoretical models have
been proposed to understand these data [1]. The most gen-
eral approach is based on the Gribov theory [2]. It relates
partonic and hadronic descriptions of small x phenomena
in interactions of real or virtual photons with nuclei. In
this approach the shadowing effects can be expressed in
terms of the cross-sections for diffraction dissociation of a
photon on a nucleon (Fig. 1). This process has been stud-
ied recently in DIS at HERA [3]. The detailed x, Q2 and
M2 (M is the invariant mass of the diffractively produced
system) dependencies observed in these experiments have
been well described in the theoretical model of [4] which is
based on Regge factorizations and uses as an input avail-
able information on diffractive production in hadronic in-
teractions. Here we will apply the same model to calculate
the structure functions of nuclei in the small x-region. The
use of the model, which describes well the diffraction dis-
sociation of virtual photons on a nucleon target, leads to
a strong reduction of the theoretical uncertainty in calcu-
lations of the structure functions of nuclei in comparison
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Fig. 1. Diffractive dissociation of a virtual photon. The shaded
area represents the exchange of a Pomeron

with previous calculations [1, 5–8]. It also allows to discuss
the shadowing effects in gluon distributions.

2 The model

In the Gribov approach the forward scattering amplitude
of a photon with virtuality Q2 on a nuclear target can
be written as the sum of the diagrams shown in Fig. 2.
Since we are interested in the low x region we will de-
scribe the various γ∗N interactions by Pomeron exchange.
The diagram of Fig. 2a corresponds to the sum of interac-
tions with individual nucleons and is propotional to A1.
The second diagram (2b) contains a double scattering
with two target nucleons. It gives a negative contribu-
tion to the total cross-section, proportional to A4/3 (for
large A). It describes the first shadowing correction for
sea quarks. According to reggeon diagram technique [9]
and Abramovsky, Gribov, Kancheli (AGK) cutting rules
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Fig. 2. The first two terms (single and double scattering) of
the multiple scattering series for the total γ∗N cross-section in
the Gribov-Glauber approach

[10], the contribution of the diagram of Fig. 2b to the total
γ∗A cross-section is related to the diffractive production
of hadrons by a virtual photon as follows:

σ
(2)
A = −4π A(A− 1)

∫
d2b T 2

A(b)

×
∫ M2

max

M2
min

dM2 dσD
γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin) , (1)

where TA(b) is the nuclear profile function, ρA is the nu-
clear density (TA(b) =

∫ +∞
−∞ dZρA(b, Z),∫

d2b TA(b) = 1) and

FA(tmin) =
∫
d2bJ0(

√−tminb)TA(b) ,

tmin = −m2
N x2

(
Q2

M2 +Q2

)−2

.

Note that FA(tmin) is equal to unity as x → 0 and de-
creases fast as x increases to xcr ∼ 1

mN RA
, due to a lack

of coherence for x > xcr.
Equation (1) is written in the approximation R2

A �
R2

N , where RN is the radius of the γ∗p interaction. It will
be used in this form only for A > 20 (see below). We
have also neglected the real part of the Pomeron ampli-
tude which is small for our value of the Pomeron intercept
(see (5)). However, for higher values of this intercept the
contribution of the real part can be substantial [11].

For a deuteron, the double rescattering contribution
has the following form

σ
(2)
D = −2

∫ tmin

−∞
dt

∫ M2
max

M2
min

dM2 dσ
D
γ∗N

dM2dt
FD(t) (2)

where FD(t) = exp(at), with a = 40 GeV−2. M2
min in (1),

(2) corresponds to the minimal mass of the diffractively
produced hadronic system and M2

max is chosen according
to the condition: xP = x · M2+Q2

Q2 ' M2+Q2

W 2 ≤ 0.1.
Equation (2) has been used to calculate inelastic con-

tributions to Glauber corrections in hadron-deuteron in-
teractions [12, 13] and was generalized to heavier nuclei in
the form (1) in [14].

Thus the second order rescattering term can be cal-
culated if the differential cross-section for diffractive pro-
duction by a virtual photon is known.

Higher order rescatterings are model dependent, but
calculation shows that, for the values of A and x (x>∼10−3)
where experimental data exist, their contribution is rather
small. We use the following unitary expression for the total
γ∗A cross-section

σγ∗A = σγ∗N

∫
d2b

A TA(b)
1 + (A− 1)f(x,Q2)TA(b)

(3)

where

f(x,Q2) = 4π
∫
dM2 dσD

γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin)/σγ∗N .

This expression is valid in the generalized Schwimmer
model [15, 16] and is obtained from a summation of fan
diagrams with triple Pomeron interaction. However, its
physical basis and applicability is much broader. For ex-
ample it follows from the rescattering of a qq̄ system with
transverse sizes distributed according to a gaussian [17].
We have checked that the results obtained from a summa-
tion of higher order rescatterings of an eikonal type are
very similar to the ones obtained with (3) – the differ-
ences being of the order of one percent.

Thus we have for the ratio RA = F2A/F2N of nucleus
and nucleon structure functions, in the region of small x

F2A

F2N
=

∫
d2b

A TA(b)
1 + (A− 1)f(x,Q2)TA(b)

. (4)

The deviation of this ratio from A1 = A
∫
d2bTA(b) is

due to the second term in the denominator of the inte-
grand in (4). Thus, knowing the differential cross-section
for diffraction dissociation on a nucleon and the structure
function of a nucleon (σγ∗N ), one can predict the A (and
x, Q2) dependence of structure functions of nuclei. Equa-
tion (4) can only be used in the region of x substantially
smaller than 10−1 where the sea quarks component dom-
inates. For x close to 10−1 shadowing of valence quarks
(which in general is not described by (4)) becomes impor-
tant [18, 19]. The effects leading to antishadowing (such
as real parts in the rescattering diagram due to secondary
exchanges) are also important in the region of x ∼ 0.1.

In [4] we described the diffractive contribution to DIS
in terms of Pomeron exchange

FD
2 (x,Q2, xP , t) =

(gP
pp(t))

2

16π
x

1−2αP (t)
P FP (β,Q2, t) (5)

where gP
pp(t) is the Pomeron-proton coupling (gP

pp(t) =
gP

pp(0) exp(Ct) with (gP
pp(0))2 =23 mb and C=2.2 GeV−2),

αP (t) = αP (0)+α′
P (0)t is the Pomeron trajectory (αP (0)

= 1.13, α′
P (0) = 0.25 GeV−2) and FP (β,Q2, t) is the

Pomeron structure function. The variable β = Q2

M2+Q2 =
x

xP
plays the same role for the Pomeron as the Bjorken

variable x for the proton. At largeQ2, FP can be expressed
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Fig. 3. The ratios (2/A)F A
2 /F D

2 computed from (3) for dif-
ferent values of x. The experimental points are from [32]. The
values of Q2 are different for different x-values [32]

in terms of the quark distributions in the Pomeron

FP (β,Q2, t) =
∑

i

e2iβ
[
qP
i (β,Q2, t) + q̄P

i (β,Q2, t)
]
. (6)

In [4] we determined FP (β,Q2, t) using Regge-factoriza-
tion for small values of β and a plausible assumption
on the β → 1 behavior. This function was then used as
an initial condition for QCD evolution of partons in the
Pomeron. The results of the QCD-evolution crucially de-
pend on the form of the gluon distribution in the Pomeron.
Experimental results for FD

2 can be understood only if the
distribution of gluons in the Pomeron is rather hard and
the gluons carry the main part of the Pomeron momen-
tum [4, 20–22]. The explicit forms of all these functions
are given in Appendix 1.

The validity of Pomeron factorization (5) for FD
2 as

well as that of the QCD evolution for partons in the
Pomeron has been questioned in recent papers. These pa-
pers deal with diffractive charm production [23, 24] and
with the contribution of longitudinal photons to diffrac-
tive production [25, 26]. However, in all these papers high-
twist effects (in Q2 or M2

Q, where MQ is the mass of the
heavy quark), which give small contributions to diffrac-
tive cross-sections, were considered. Arguments in favour
of usual QCD evolution for the main twist contribution to
FD

2 have been given in [27]. In any case the CKMT model
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Fig. 4. The ratios (A1/A2)F A2
2 /F A1

2 computed from (3) for
different values of x. The experimental points are from [32] and
[33]. The values of Q2 are different for different x values [32,
33]

[4] gives a reasonable description of diffractive production
in DIS. Thus it effectively includes high twist effects and
can be used to compute the function f(x,Q2), which de-
termines the shadowing of nuclear structure function via
(4). This function can be written in terms of the ratio
FP /F2N :

f(x,Q2) =
∫
dβ

4β
(
gP

pp(0)
)2

(
1
xP

)2∆

× FP (β,Q2)
F2N (x,Q2)

F 2
A(tmin) (7)

where the integration limits are x/x0P with x0P = 0.1
and Q2/(M2

min + Q2). In the following we take M2
min =

0.4 GeV2, in order to include the ρ-meson peak in the
integration region.

The parametrization of the Pomeron [4] and nucleon
[28] structure functions are given in Appendix 1. Note
that the Q2-dependence of nuclear shadowing is obtained
by evolving separately the nucleon and Pomeron struc-
ture functions and taking their ratio in (7). Actually, one
should compute first F2A at Q2 = Q2

0 and evolve it using
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Fig. 5. The ratios (1/A)F A
2 /F N

2
computed from (3) for different
values of x in the small x region,
at fixed values of Q2

the nuclear partonic distributions. However, this would re-
quire the knowledge of these distributions for all values of
x. At small x, where sea quarks are dominant, these two
procedures are equivalent for the Born term and the first
rescattering correction in (4). As discussed above, higher
rescattering corrections are small.

In the numerical calculations we use a standard Woods-
Saxon profile TA(b) for A > 20. For light nuclei (A < 20)
we use a gaussian profile

TA(b) =
3

2πR2
A

exp(−3b2/2R2
A) (8)

with an r.m.s. radius parametrized as [29]

RA = 0.82 A1/3 + 0.58 fm . (9)

For deuteron (9) is not valid. In this case we use (2). The
simple exponential form of FD(t) gives results which differ
by less than 20% from the more sophisticated parametriza-
tion used in [6, 30].

In (1) we have neglected the t-dependence of the γ∗p
diffractive cross-section. As explained above, this approxi-
mation is only used for large nuclei where nucleon sizes can
be neglected as compared to nuclear ones. For light nuclei
(A < 20), we take into account this t (or b)-dependence
by making the following replacement

R2
A ⇒ R2

A +R2
N , RN = 0.8 fm . (10)

This nucleon radius approximately describes the t-depen-
dence of the γ∗p diffractive cross-section in the kinematical
region we are interested in.

3 Numerical results

The results of our calculations are shown in Figs. 3–7.
Theoretical predictions for the deuteron structure func-
tion FD

2 /2F
N
2 are shown in Fig. 5. Our results are close to

those of [30, 31] but smaller by a factor of about 3 from the
results of [6]. Comparison of our predictions for the ratio
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Fig. 6. The ratios (1/A)gA/gN of
gluon distribution functions com-
puted for different values of x in
the low x region, at fixed values of
Q2

2
AF

A
2 /F

D
2 with experimental data of NMC [32] is shown

in Fig. 3 and for ratios of different nuclei in Fig. 4. New
data for the ratio FSn

2 /FC
2 [33] are also shown in Fig. 4. It

is important to note that experimental points in Figs. 3,
4 for different x correspond to different values of < Q2 >
[32] [33]. This correlation has been taken into account in
our calculations. The agreement between theoretical pre-
dictions and experimental data is good. Note that there
are no free parameters in our calculations.

Our predictions for the ratio 1
A

F2A

F2N
in the region of

very small x are shown in Figs. 5 for fixed values of Q2.
They could be confronted to experiment if nuclei at HERA
would be available. Note that our results are more reliable
for small values of x (x < 10−2) where the effects of both
valence quark shadowing and antishadowing are neglige-
able. The curves for shadowing effects in the gluon dis-
tribution of nuclei 1

A
gA(x,Q2)
gN (x,Q2) are shown in Figs. 6. They

look similar to the shadowing for the quark case. How-
ever the absolute magnitude of the shadowing is smaller

in the gluon case contrary to expectations of some theo-
retical models [1] but in agreement with [34]. (Note that
these results are sensitive to the gluonic distribution in
the Pomeron, which is poorly known at present). These
predictions can be tested in experimental studies of J/ψ
and Υ -production on nuclear targets at RHIC and LHC.

Finally we want to discuss in more detail the Q2-de-
pendence of the shadowing. Recent NMC data [33] for the
ratio of FSn

2 /FC
2 are shown in Fig. 7 as functions of Q2

for fixed values of x in the small x region. The theoretical
curves have a weak dependence on Q2 and are in reason-
able agreement with experiment, although the Q2 depen-
dence seems stronger in the data especially in the region
of small Q2. At larger values of x the data are practically
Q2-independent. These properties should be checked in
future experiments.
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Fig. 7. The ratio (12/119)F Sn
2 /F C

2 computed from (3) for
different values of Q2, at two fixed values of x. The data points
are from [33]

4 Conclusions

In conclusion, a model based on the Gribov-Glauber the-
ory of nuclear shadowing and the properties of diffraction
in DIS observed at HERA, leads to a fair description of
experimental data on structure functions of nuclei in the
small x region. Predictions of shadowing effects for quark
and gluon distributions are given. They can be tested in
future experiments at HERA and in hadronic colliders.
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Appendix 1

For the Pomeron and nucleon structure functions we use
the parametrization of the CKMT model [4, 28]

F2N (x,Q2) = A(Q2)x−∆(Q2)(1 − x)n(Q2)+4

+B(x,Q2)x1−αR(0)(1 − x)n(Q2) , (A.1)
FP (β,Q2) = F2N (β,Q2;A → eA,B(x) → fB′, n

→ n− 2) (A.2)

where

A(Q2) = A

(
Q2

Q2 + a

)1+∆(Q2)

,

B(x,Q2) = B(x)
(

Q2

Q2 + b

)αR

∆(Q2) = ∆0

(
1 +

2Q2

Q2 + d

)
,

n(Q2) =
3
2

(
1 +

Q2

Q2 + c

)

with (all dimensional quantities are in Gev2)

A = 0.1502 , B′ = 1.2035 , αR = 0.4150 ,
∆0 = 0.07684 , a = 0.2631 ,
b = 0.6452 c = 3.5489 ,
d = 1.1170 , e = f = 0.07 .

Finally, we have [28]

B(x) = 0.754 + 0.4495(1 − x) . (A.3)

The two terms in (A.3) appear because we have used
for the valence quark distributions in the proton d(x) =
u(x)(1 − x). Such a difference between u and d quark dis-
tributions is not present in the Pomeron case, and we have
dropped the 1 − x factor in (A.3). In the CKMT model
the Pomeron structure function is determined from the
nucleon one using triple Regge couplings determined from
soft diffraction data and Regge factorization.

Comparison of (A.2) and (6) allows to determine the
valence and sea quark distributions in the Pomeron. Like-
wise one can determine the corresponding ones in the nu-
cleon. These distributions are used as initial conditions at
Q2 = Q2

0 in the DGLAP evolution equation, as described
in [28]. The gluon distributions for Q2 ≤ Q2

0 in the nucleon
and the Pomeron are [4, 28]

gN (x,Q2) = Ag(Q2) x−∆(Q2)(1 − x)n(Q2)+2 (A.4)

g
P
(x,Q2) = e Ag(Q2) x−∆(Q2)(1 − x)−0.5 (A.5)

where Ag(Q2) has the same form as A(Q2) in (A.1) and
(A.2):

Ag(Q2) = Ag

(
Q2

Q2 + a

)1+∆(Q2)

.

The normalization of gN is obtained from the energy-
momentum sum-rule. For the Pomeron this sum-rule is not
valid and the normalization of gP is obtained from that of
gN using Regge factorization. The constant e = 0.07 is the
same as in (A.2). Actually there is a large ambiguity in the
shape of gP . We have only determined the x-behaviour at
small x as well as the absolute normalization. The form
(A.5) is just a simple extrapolation to the region of x → 1.

Using the gluon distributions in (4) and (7) one can
obtain the corresponding distributions in nuclei.



A. Capella et al.: Structure functions of nuclei at small x and diffraction at HERA 117

In order to have exactly the diffractive cross-section
computed in [4] as well as the same F2N of [28] we use
the values of Q2

0 in those references. These are Q2
0 = 5

GeV2 for the Pomeron and Q2
0 = 2 GeV2 for the nu-

cleon. The corresponding gluon normalizations obtained
from the energy-momentum sum rule are Ag = 1.84 at Q2

0
= 2 GeV2 and Ag = 1.71 at Q2

0 = 5 GeV2.
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